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Lattice dynamics and specific heat of AI-Si 
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A simplified treatment has been proposed to study quantitatively the lattice dynamics of At-Si and 
AI-Ge alloy systems by solid-solutioning under pressure. The volume and electron density effects 
on the lattice dynamics of the pure constituents aluminium, silicon or germanium are considered, 
and the phonon dispersion relations of the local and band modes were obtained. Then, the 
concentration dependence of the local and band mode frequencies were calculated for the 
All -xSix and All -xGe~ systems. Using the local and band mode frequencies, the lattice specific 
heat at constant volume was determined theoretically, and results obtained for the temperature- 
dependent specific heat of matrix aluminium were found to be in good agreement with the 
experimental data. The concentration dependence of the specific heat could then be predicted 
quantitatively for All-xSix and All-~Ge~ alloy systems. 

1. In troduct ion  
The formation and physical properties of solid solu- 
tions under pressure byrap id  quenching from the 
liquid state are interesting in the field of materials 
science and technology. Recently, we [1] have studied 
the solid solubility of silicon and germanium in alumi- 
nium under pressure using microscopic electronic the- 
ory, and the bulk properties and the solid solubility of 
the A1-Si and A1-Ge systems obtained were consistent 
with the experimental data. We then, presented [2] the 
concentration dependence of elastic moduli for AI-Si 
and A1-Ge solid solutions. Up to this time, theoretical 
studies on the lattice dynamics of the alloy system 
have been devoted to the Rb-K system, because both 
constituents were alkali metals and the lattice dy- 
namics of the pure constituents have been investigated 
in detail. Classifying roughly, there are two theoretical 
treatments. One is the coherent-potential approxima- 
tion, which is a mean-field type of approach employed 
to describe the electron density of states in rafidom 
alloys. Along this line, some research [3-5] on the 
mass defect and the differences of force constants, etc., 
have been reported, and neutron scattering cross-sec- 
tions for various momentum transfers have been cal- 
culated in comparison with experimental data. The 
other is computer-simulation calculation [6,7] in 
a molecular dynamics system, which consists of many 
particles involving randomly chosen solute atoms. 
The latter obtains the dynamical structure factor, but 
the effort in computer-simulation procedures is enor- 
mous. In the present work, we did not use a rigorous 
description of the lattice vibrations for the alloy sys- 
tems, but we have presented a simplified treatment to 
estimate quantitatively the phonon mode frequencies 
and thermal properties of AI-Si and A1-Ge alloy sys- 
tems. 
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2. Lattice dynamics of AI-Si  and 
AI-Ge alloy systems 

The All -xSix and All _xGe~ alloy systems form substi- 
tutional solid solutions over the s-phase region, and 
the crystal binding of the solid solution is unchanged 
compared with that of pure aluminium metal. The 
bulk properties of these alloys were reproduced in the 
virtual crystal approximation, and the idea of the 
average atomic potential was suitable for the static 
properties. In the dynamical treatment we could not 
treat the dynamics of the hypothetical pseudo-alloy 
atom directly from the idea of the average atomic 
potential, because the constituent atoms thermally 
vibrate. In fact, it is well known that local and band 
vibrational modes corresponding to the lattice vibra- 
tion of the solute and solvent atoms are observed. But, 
the lattice site of the solute and solvent atoms in the 
substitutional solid solution is not determined and 
theoretical treatment of the lattice dynamics en- 
compasses many difficulties. Some research [3-7], 
mentioned in Section 1 has as a future goal the calcu- 
lation of the macroscopic thermal properties by sum- 
ming up the contributions from the individual vibra- 
tional modes over braches and wave number space. 

We introduce, instead, the following simplifying ap- 
proximation. When AI~ _xSix solid solution is formed, 
aluminium atoms in the solid solution are in a state of 
volume compression compared with those in pure 
aluminium and silicon atoms in a state of volume 
expansion compared with those in fc c silicon [1]. On 
the other hand, when Al~_xGe, solid solution is for- 
med, aluminium atoms in the solid solution are in 
a state of volume expansion compared with those in 
pure aluminium, and germanium atoms in a state of 
volume compression compared with those in fc c ger- 
manium [1]. Therefore, we consider apparently the 
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lattice vibrations of aluminium, silicon or germanium 
atoms in the solid solution as those in pure alumi- 
nium, fcc  silicon or fcc  germanium crystals at the 
equilibrium lattice constant, ao [-1], and the electron 
density, n = Z/f~o, of the solid solutions with fcc  
phase�9 Here, the equilibrium atomic volume, ~0 re- 
lated to average valency, Z = (1 - x ) Z  AI Jr- X'  Z Si or Ge 
and the interelectronic distance, rs is given by 

4 
~ 0  ~ - -  

4 
Z 

= Z 4xrs3 (1) 
3 

The normal vibrational modes with the branch i, 
the wave vector q and the frequency vi( q, x) with con- 
centration, x, of silicon or germanium fixed, are deter- 
mined by solving the secular equation 

ID~(q,x) - M~vi(q ,x)~,~l  = 0 (2) 

wherej = A1, Si or Ge. The dynamical matrix D] ~ (q) is 
given by 

where 

J D~ ~ (q) = N~'(q + G)~(q + G)~ V~eff(q -4"- G) 
G 

- N 2 G~ GI~ V~ff ( G )  
G#o 

(3) 

F~ff(q) = 1 ~ V~ff(r,)ei,'', (4) 

In Equation 3, G is the reciprocal lattice vector and in 
Equation 4, rl is the equilibrium position vector of  the 
/th ion. Within the second-order perturbation theory 
based on pseudopotentials, the effective potential 
V~ff(r) is obtained from the pairwise two-body force 
between ions and given by 

Z2e 2 2ZJ e 2 P 

//~ff (r) -- I~FJ(q)Sln(qr)dq (5) 
r x 3o qr 

where 

( aoq v Iql xo(q) 
F (q) = 1 - 4 e f(q)Zo(q)/q (6) 

In Equation 6, the details of VJb(q), e(q), zo(q) andf(q) 
are the same as those in our previous work [-1]. The 
dynamical matrix, D ~ (q), is given by 

= D,o. (q)  + D ~ (q) (7) 

where D]o~,(q) and D~(q) are the contributions from 
the direct electrostatic interaction of ions and from the 
indirect two-body interaction of ions�9 The contribu- 
tion D~i~o.(q) is obtained with Ewald's method given by 

4nZ2e 2 
D.ff.(q) = ~'(qc + G)~(q + G)~ no (q + G) 2 e-(q+~/4n 

-- 2 Z2e2ei"r'[ rtS C erfc (ql/2rt) 
r~#= 0 

3 \ ~ ]  5~,~ (8) 

where q and erfc(qt/zrl) are a converging parameter 
and complementary error function, respectively�9 The 
contribution D~I (q) is given by 

D~(q )  = - ~ (q  + G)=(q + G)~F(Iq + GI) 
G 

+ ~ G~ G~ F(G) (9) 
G#o 

This simplified treatment for the lattice dynamics in 
Equation 2 has been applied to alkali alloy systems 
I-8], and a few local and band mode frequencies of the 
Rbo.71-  Ko.29 alloy did not deviate quantitatively 
from those [-7] of the coherent-potential approxima- 
tion and by the molecular dynamics simulation�9 Using 
the equilibrium lattice constant, ao[1], and the elec- 
tron density, n, in Equation 1, we can show the 
phonon curves obtained for local (silicon or germa- 
nium) and band (aluminium) modes of Alo.ssSio.15 
and Alo.8sGeo.15 alloys in Fig. la and b. In this 
figure and what follows, the results with the 
Vashishta-Singwi screening function [1] are given�9 
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Figure '1 Calculated phonon dispersion relations for ( - - - )  local 
and ( - - )  band modes for (a) Alo.ssSio.15 and (b) Alo.ssGeo.15 
alloys. 
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Then, we give the calculated results for the concentra-  
tion dependence of  the local and band  mode  frequen- 
cies in the All -xSix and All -xGex alloy system in Fig. 
2 representatively at X and L points. Our  predicted 
p h o n o n  frequencies in Fig. 2 have a calculated accu- 
racy I Avil ~< 0.1 T H z  due to other  screening functions 
[1]. F r o m  Fig. 2, our  calculated data  of  v~(q) for 

matrix a luminium are in good  agreement  with experi- 
mental  da ta  I-9]. 

3. Specific heat of AI-Si and 
AI-Ge alloy systems 

Using the local v si o, GO(q) and band  mode  frequencies 
vAI(q), we can express the energy contr ibut ion from the 
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) band mode frequencies for (a, b) A11 _xSix and (c, d) AI 1 _xGe~ alloys 
at X and L points. The points for matrix aluminium are the experimental data [9]. 
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lattice vibrational term, U, for the solid solution 
All_=Six or All _=Ge= as 

U = (1 - x ) U  AI + x U Si~ Ge (10) 

where U si or 6e are contributions from local and band 
modes, and 

U j = N ~ h v i ( q )  + 
i, q expEhv~(~ /kT3  - 1 

j = AI, Si or Ge (11) 

Using Equations 10 and 11, the lattice specific heat at 
constant volume, Cv, is given by 

Cv = (1 - x )C  A1 + x C  si~ (12) 

where 

C J = g" N k ( h v i ( q ) / k T )  z 
{expEhv f (q ) / kT]  - 1} 2 exp (hv i (q ) /kT)  (13) 

The sums over q in Equations 12 and 13 are cal- 
culated by the following sampling method. Consider- 
ing the symmetry of the irreducible 1/48th portion of 
the Brillouin zone, it is sufficient to determine the 
phonon frequencies in the range q = 2n(q=,qy,q=)/ 
(16ao), where qx,qr,  q= are positive integers and 
satisfy the inequalities 0 ~< q= ~< qy ~< q= ~< 8 and 
q= + qr + qz <<. 12. We show the predicted temper- 
ature dependence of the specific heat, Cv, for matrix 
aluminium in Fig. 3. In the harmonic approximation, 
Cv becomes 3 N k  at high temperatures. Experi- 
mentally, Cv at high temperatures near the melting 
point, Tin, deviates from the constant value 3 N k  [10]. 
This deviation is produced by the introduction of the 
anharmonic contributions from higher than cubic 
terms (for example, see [11]). At temperatures from 
low to about 850 K, we obtain good agreement of the 
calculated results of Cv for matrix aluminium with the 
observed data [10] in Fig. 3. Then, we can show the 
concentration, x, dependence of Cv for the Al~_xSix 

and All _~Gex alloy systems at the representative tem- 
peratures 100 and 300 K as in Fig. 4a and b. The 
maximum deviation of specific heat, Cv, obtained in 
Fig. 4a and b is about _ 0.02 and + 0.05Jmol-  
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Figure 3 Specific heat at constant volume, Cv, versus temperature 
for matrix aluminium. The points are the observed data [10]. 
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Figure 4 The concentration, x, dependence of the specific heat, Cv, 
for the A11 xSix and Atl_xGex alloys at (a) 100 K and (b) 300 K. 
The points for matrix aluminium are the observed data [10]. 
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K-~. From Fig. 4a and b, we see that the obtained 
results of C, for the All-xSix and All-xGe, alloy 
systems are monotonic functions of the atomic frac- 
tion, but show a non-linear dependence on x. 

4. Conclusion 
We have proposed a simplified treatment to study 
quantitatively the lattice dynamics of A1-Si and A1-Ge 
alloy systems. We have presented the numerical re- 
sults of the concentration dependence of the local and 
band mode frequencies and the lattice specific heat. 
Our predicted data are useful in studying the thermal 
and anharmonic properties of these alloy systems, and 
we hope that there will be further experimental re- 
search in this field. 
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